Multiplication of polynomials The product of two polynomials is calculated using the following rules: 1. distributive law / rule: a(b+c)=ab + ac 2. exponents first law: xaxb = xa+b example: Multiply: x5( 2x3 - 5x + 8) x5( 2x3 - 5x + 8) = x5.2x3 +x5.(-5x) +x5.8 = 2x8 -5x6 + 8x5
Multiply: (x3 + 3y2)(3x4 + 2y) This task can be solved applying double the distributive law or FOIL rule for multiplying binomials – First Outer Inner Last (x3 + 3y2)(3x4 + 2y) = = x3.3x4 (First terms multiplied) + x3.2y (Outer terms multiplied) +3y2.3x4 (Inner terms multiplied) + 3y2.2y (Last terms multiplied) =3x7+2x3y+9x4y2+6y3
Common product forms
Factoring of polynomials Factoring is representing a polynomial as a product of two or more polynomials. Factoring reverses the distributive operation. Not all polynomials can be factored. Polynomials that can not be factored are called prime polynomials. example: Factor 8x4y2 + 4 x3y 8x4y2 + 4 x3y = 4x3y.2xy + 4x3y =(2xy+1).4x3y Note that 2xy+1 can not be factored further, therefore it is a prime polynomial The above example is called ‘Factoring out the greatest common factor (GCF)’ GCF is the greatest factor which is common to all terms.
General steps when attempting to factor a polynomial:
example: Factor 3zx+6zy+2x+4y Note: First two terms have common factor of 3z, while last two terms have common factor of 2 3zx+6zy+2x+4y = 3z(x+2y) + 2(x+2y) (Step 1) Now we notice that (x+2y) is common factor of both groups = (3z+2)(x+2y) (Step 2) Note that even if Step 1 is successful, or there is a common factor for some groups of terms), it will not always yield a common factor of the groups factored in Step 1.
example: Factor 9x2 – 25x8 9x2 – 25x8 = (3x)2 – (5x4)2 = (3x – 5x4)(3x+5x4)
example: Factor x3 – 27 x3 – 27 = (x-3)(x2+3x+9)
example: Factor x2+9x+20 x2+9x+20 (make sure ordered by degree of the terms) = x2+5x+4x+4.5 (Reverse FOIL) = (x+4)(x+5) Note that for reverse FOIL to be valid, the first term (9x) must be represented as sum of 2 terms (+4x +5x) with such coefficients that, as in the example, 4+5 = 9 (the original first term) and 4.5 = 20 (the original constant coefficient).
|